Sunday, January 19, 2014

Red Black Tree vs AVL Tree vs B-Tree

B-tree when you're managing more than thousands of items and you're paging them from a disk or some slow storage medium. RB tree when you're doing fairly frequent inserts, deletes and retrievals on the tree. AVL tree when your inserts and deletes are infrequent relative to your retrievals.
think B+ trees are a good general-purpose ordered container data structure, even in main memory. Even when virtual memory isn't an issue, cache-friendliness often is, and B+ trees are particularly good for sequential access - the same asymptotic performance as a linked list, but with cache-friendliness close to a simple array. All this and O(log n) search, insert and delete. B+ trees do have problems, though - such as the items moving around within nodes when you do inserts/deletes, invalidating pointers to those items. I have a container library that does "cursor maintenance" - cursors attach themselves to the leaf node they currently reference in a linked list, so they can be fixed or invalidated automatically. Since there's rarely more than one or two cursors, it works well - but it's an extra bit of work all the same. Another thing is that the B+ tree is essentially just that. I guess you can strip off or recreate the non-leaf nodes depending on whether you need them or not, but with binary tree nodes you get a lot more flexibility. A binary tree can be converted to a linked list and back without copying nodes - you just change the pointers then remember that you're treating it as a different data structure now. Among other things, this means you get fairly easy O(n) merging of trees - convert both trees to lists, merge them, then convert back to a tree. Yet another thing is memory allocation and freeing. In a binary tree, this can be separated out from the algorithms - the user can create a node then call the insert algorithm, and deletes can extract nodes (detach them from the tree, but dont free the memory). In a B-tree or B+-tree, that obviously doesn't work - the data will live in a multi-item node. Writing insert methods that "plan" the operation without modifying nodes until they know how many new nodes are needed and that they can be allocated is a challenge. Red black vs. AVL? I'm not sure it makes any big difference. My own library has a policy-based "tool" class to manipulate nodes, with methods for double-linked lists, simple binary trees, splay trees, red-black trees and treaps, including various conversions. Some of those methods were only implemented because I was bored at one time or another. I'm not sure I've even tested the treap methods. The reason I chose red-black trees rather than AVL is because I personally understand the algorithms better - which doesn't mean they're simpler, it's just a fluke of history that I'm more familiar with them. One last thing - I only originally developed my B+ tree containers as an experiment. It's one of those experiments that never ended really, but it's not something I'd encourage others to repeat. If all you need is an ordered container, the best answer is to use the one that your existing library provides - e.g. std::map etc in C++. My library evolved over years, it took quite a while to get it stable, and I just relatively recently discovered it's technically non-portable (dependent on a bit of undefined behaviour WRT offsetof). http://nathanbelue.blogspot.in/2013/01/avl-vs-red-black-conclusion_6.html
http://attractivechaos.wordpress.com/2008/10/02/comparison-of-binary-search-trees/

0 comments:

Post a Comment