Problem
A binary tree is a mirror image of itself if its left and right subtrees are identical mirror images i.e., the binary tree is symmetrical. This is best explained with a few examples.Example
1
/ \
2 2
TRUE 1
/ \
2 2
\
3
FALSE 1
/ \
2 2
/ \ / \
4 3 3 4
TRUE 1
/ \
2 2
/ \ / \
3 4 3 4
FALSE 1
/ \
2 2
/ \
3 3
TRUESolution
Method 1 - Recursiion mirrorEquals(BTree left , BTree right)Basically compare the left subtree and inverted right subtree, drawing an imaginary line of inversion across root.
boolean mirrorEquals(BTree left, BTree right) { if (left == null || right == null) return left == null && right == null; return left.value == right.value && mirrorEquals(left.left, right.right) && mirrorEquals(left.right, right.left); }
Method 2 - Iterative solution using queue
Insert 2 elements at a time and then pop and compare the values, and continue to do with the children.
bool isMirrorItselfIteratively(BTree root) { /// use single queue and initial push if(!root) return true; queue<btree> q; q.push(root.left); q.push(root.right); BTree l, r; while(!q.empty()) { l = q.front(); q.pop(); r = q.front(); q.pop(); if(l==NULL && r==NULL) continue; if(l==NULL || r==NULL ) return false; if(l.data!=r.data) return false; //not the push ordering q.push(l.left); q.push(r.right); q.push(l.right); q.push(r.left); } return true; }
References