### Problem

**Puzzle 1:**

The puzzle is if the shopkeeper can only place the weights in one side of the common balance. For example if shopkeeper has weights 1 and 3 then he can measure 1, 3 and 4 only. Now the question is how many minimum weights and names the weights you will need to measure all weights from 1 to 1000. This is a fairly simple problem and very easy to prove also. Answer for this puzzle is given below.

**Solution :**

This is simply the numbers 2^0,2^1,2^2 ... that is 1,2,4,8,16... So for making 1000 kg we need up to 1, 2, 4, 8, 16, 32, 64, 128, and 512. Comments your suggestions or other answers.

**Puzzle 2:**

This is same as the above puzzle with the condition of placing weights on only side of the common balance being removed. You can place weights on both side and you need to measure all weights between 1 and 1000. For example if you have weights 1 and 3,now you can measure 1,3 and 4 like earlier case, and also you can measure 2,by placing 3 on one side and 1 on the side which contain the substance to be weighed. So question again is how many minimum weights and of what denominations you need to measure all weights from 1kg to 1000kg. Answer for this puzzle is given below.

**Solution:**

For this answer is 3^0, 3^1, 3^2... That is 1,3,9,27,81,243 and 729.

## 0 comments:

## Post a Comment